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Abstract

Objective: Angelman syndrome (AS) is a severe neurodevelopmental disorder

caused by loss of function of the maternally inherited UBE3A gene in neurons.

Promising disease-modifying treatments to reinstate UBE3A expression are

under development and an early measure of treatment response is critical to

their deployment in clinical trials. Increased delta power in EEG recordings,

reflecting abnormal neuronal synchrony, occurs in AS across species and corre-

lates with genotype. Whether delta power provides a reliable biomarker for clin-

ical symptoms remains unknown. Methods: We analyzed combined EEG

recordings and developmental assessments in a large cohort of individuals with

AS (N = 82 subjects, 133 combined EEG and cognitive assessments, 1.08–
28.16 years; 32F) and evaluated delta power as a biomarker for cognitive func-

tion, as measured by the Bayley Cognitive Score. We examined the robustness

of this biomarker to varying states of consciousness, recording techniques and

analysis procedures. Results: Delta power predicted the Bayley Scale cognitive

score (P < 10−5, R2 = 0.9374) after controlling for age (P < 10−24), genotype:

age (P < 10−11), and repeat assessments (P < 10−8), with the excellent fit on

cross validation (R2 = 0.95). There were no differences in model performance

across states of consciousness or bipolar versus average montages (ΔAIC < 2).

Models using raw data excluding frontal channels outperformed other models

(ΔAIC > 4) and predicted performance in expressive (P = 0.0209) and recep-

tive communication (P < 10−3) and fine motor skills (P < 10−4). Interpreta-

tion: Delta power is a simple, direct measure of neuronal activity that reliably

correlates with cognitive function in AS. This electrophysiological biomarker

offers an objective, clinically relevant endpoint for treatment response in emerg-

ing clinical trials.

Introduction

Novel disease-modifying treatments have profound poten-

tial to transform the treatment landscape for neurodevel-

opmental diseases with strong genetic underpinnings.1–2

Detection of a treatment response currently relies on clin-

ical measurements of neurodevelopmental outcome,

which can be slow, unreliable and challenging in young

and neurologically impaired populations. The

electroencephalogram (EEG) provides a direct, objective

measure of neuronal activity and offers a promising non-

invasive tool to identify early and clinically meaningful

biomarkers of neurological function for use in clinical

trials.

Angelman syndrome (AS) is a genetic neurodevelop-

mental disorder occurring in 1 in 10,000 to 25,000 live

births3–5 characterized by severe cognitive deficits, motor

impairments and a high comorbidity with epilepsy.6–8 AS
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is caused by loss of function of the maternally inherited

and paternally imprinted ubiquitin-protein ligase UBE3A

gene in neurons.9,10 Targeted disease-modifying treat-

ments to reinstate UBE3A expression in neurons are

under development,11–18 and a robust, easily obtained

and quantifiable biomarker that reliably assays disease

severity is critical to an assessment of efficacy in clinical

trials.

The baseline EEG is strikingly abnormal in AS, even in

individuals without clinical seizures.19,20 Diffuse, frequent

bursts of notched or polyphasic delta activity (2–4 Hz)

are the most characteristic EEG feature of AS and are

observed across all genotypic classes of disease.20–23 Quan-

titative EEG studies have shown increased delta power in

individuals with AS compared to neurotypical control

subjects24 and have also demonstrated that delta power

varies with age25 and genotype26 in patients with AS.

Increased delta power is observed in AS mouse models

relative to wild-type mice,24 confirming preservation of

this EEG phenotype across species. Highlighting the

potential utility of delta power as a biomarker in clinical

trials, decreased delta power was found to correlate with

treatment in a recent open-label clinical trial.27 Although

delta power is a promising biomarker for AS, whether

this EEG measure correlates with neurological symptoms

in this disease remains unknown.

We hypothesized that delta power would predict cogni-

tive function in individuals with AS. Using data gathered

in a large natural history study of individuals with AS

including concurrent EEG recordings and neurodevelop-

mental testing, we found that increased delta power

strongly correlated with decreased cognitive function in

AS. We tested this relationship across states of conscious-

ness, EEG recording modalities and data analysis

approaches, and found that delta power provides a robust

predictor of cognitive function in each circumstance. This

work suggests that EEG delta power provides a powerful,

objective, non-invasive, and reliable endpoint for treat-

ment response in emerging clinical trials for AS.

Subjects and Methods

Subject enrollment

Data were obtained through the large, multicenter Angel-

man Syndrome Natural History Study (ClinicalTrials.gov

identifier: NCT00296764) conducted as part of the Rare

Diseases Clinical Research Network, Angelman, Rett and

Prader-Willi syndrome consortium. Consent was obtained

according to the Declaration of Helsinki and was

approved by the institutional review boards of the partici-

pating sites. Subjects were recruited at six sites between

the years of 2006–2017, and EEGs from two sites (Rady

Children’s Hospital/University of Califoria San Diego and

Boston Children’s Hospital) comprised the cohort used in

this study. We excluded data where more than 3 months

had elapsed between EEG and neurodevelopmental data

collection.

Neurodevelopmental testing

The Bayley Scales of Infant and Toddler Development,

Third Edition, administered by psychologists with exten-

sive testing experience in the AS population, was used to

assess developmental functioning.28 The Bayley Scales are

normed for typically developing children between 1 and

42 months of age, but have been used to assess patients

with developmental disabilities of all ages, including AS.29

Five domains from the Bayley Scales (Cognitive, Expres-

sive Communication, Receptive Communication, Fine

Motor and Gross Motor) were assessed for each subject,

where maximal scores possible for each test were: Cogni-

tive (91), Receptive Communication (49), Expressive

Communication (48), Fine Motor (66) and Gross Motor

(72). Raw scores were used for analysis.

EEG data collection and processing

EEG recordings were collected using the international 10–
20 EEG system on either BioLogic or Xltek systems.30 At

each session, 30 min of awake recording and 30 min of

asleep recording were attempted.

The EEG data processing pipeline is shown in Fig-

ure 1. Data were collected at 200–512 Hz sampling rates.

All data were bandpass filtered from 1 to 80 Hz and

notch filtered at 60 Hz (using Hamming-windowed

finite impulse response filters) for visual inspection. On

visual review, sections of data containing at least one

channel contaminated by muscle, ocular, movement, or

electrical artifacts were manually identified. We choose

to perform a manual review, rather than apply an auto-

mated method for artifact removal, to avoid the poten-

tial subtle impacts of data processing on the results, and

carefully distinguish the delta frequency rhythm of inter-

est from artifacts with overlapping spectral content (e.g.,

due to eye blinks).

Data were analyzed referenced to the common average

reference, longitudinal bipolar reference and the linked-

ear reference. In addition, regional clusters of electrodes

were group-average referenced to assess the impact of

subsampling channels on model quality.

EEG data were first manually staged for wake and sleep

states by an experienced clinical neurophysiologist (CJC).

As children with AS lack normal wake and sleep EEG

architecture, here, all data with a blink, movement, or

eyes open documented were categorized as awake. All
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data without a blink or movement artifacts in addition to

either documentation of closed eyes or the presence of

increased slowing at the vertex and frontocentral regions

or well-characterized sleep architecture (e.g., sleep spin-

dles and K-complexes) were classified as sleep. Data with-

out sufficient evidence to categorize them as awake or

asleep were excluded from the analysis.

Power spectral density estimates were derived using

custom MATLAB scripts. Sliding, non-overlapping 1-sec

windows were used to calculate delta power (2–4 Hz),

theta power (5–7 Hz), alpha power (8–12 Hz), and beta

power (13–30 Hz) using the fast Fourier Transform with

a Hamming window taper. For relative power estimates,

within each 1-sec sample, power spectral densities were

divided by the summed broad-spectrum power (1–50 Hz)

in the same 1-sec sample, resulting in a unitless estimate

of delta power.

Statistical modeling

To evaluate the relationship between cognitive function

and delta power, we modeled cognitive score as a func-

tion of delta power and a subject-specific intercept to

account for multiple observations from some subjects.

We included age and genotype:age as fixed effects in each

model. To determine the partial R2 for each predictor, we

computed the full model sum of squared error (SSE) and

then the reduced model SSE excluding the predictor of

interest using the formula:

Partial R2 ¼ SSEreduced� SSEfullð Þ=SSEreduced
In our primary analysis, relative power in the delta

band was computed from wake-state EEG data from all

19 channels in the common average reference, excluding

all epochs manually marked as containing artifact.

Figure 1. EEG data processing procedure. (A) Data were referenced to three standard montages for review and analysis: the linked-ear, bipolar,

and average references. Electrodes used in computing the reference are highlighted in blue. (B) EEG data were manually reviewed and staged for

periods of sleep and wakefulness. (C) Data were visually inspected and manually cleaned to remove non-cerebral artifacts (highlighted here in

yellow). An example “clean” dataset is shown (bottom row) with breakpoints identified by vertical black lines. (D) Power spectral densities (PSDs)

were calculated for each EEG recording. The delta [alpha] frequency range is indicated with a blue [red] rectangle on the plotted PSD. An

example EEG trace (grey) showing filtered delta [alpha] activity in blue [red] in a sample EEG trace is shown in the inset.
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We subsequently evaluated the relationship between

delta power and Bayley Cognitive Score in which delta

power was estimated from varying states of consciousness

(wake, sleep, or mixed states); montages (bipolar longitu-

dinal, common average, or linked-ear reference); pre-

processing steps (different subsamplings of electrodes, and

cleaned or raw data); and spectral measures (absolute or

relative delta power, and relative theta, alpha, or beta

band power). To compare across nested models, we used

the Akaike Information Criterion (AIC). Using the AIC,

the degree of penalty can be approximately understood in

terms of the number of parameters, where if comparing

two models, the model with the lower AIC would still be

preferable even if it had an additional ΔAIC/2 parame-

ters.31 We interpret a change in AIC (ΔAIC) of less than

2 as model equivalency, and ΔAIC ≥ 4 as model superi-

ority.32 To allow direct comparison of AIC scores between

models, datasets of equal sizes were compared.

In additional post hoc analyses, we used spectral power

in frequency bands outside the 2–4 Hz delta range, as

well as raw delta power, to predict cognitive function.

All relative power values were normalized to global

power in the 1–50 Hz frequency band. To allow direct

comparison of coefficient estimates amongst spectral

bands with different power value ranges, spectral power

values were z-scored, and the standardized coefficient

estimates (β � SE) based on these z-scores are reported.

To assess the relationship of delta power to other devel-

opmental domains assessed by the Bayley, we evaluated

the ability of delta power to predict dependent variables:

Fine Motor (N = 131), Gross Motor (N = 133), Recep-

tive Communication (N = 131), and Expressive Commu-

nication raw scores (N = 131).

Data availability

Derived data supporting the findings of this study are

available from the corresponding author on request.

Results

Subject and EEG data characteristics

Eighty-two unique participants with AS (6.52 � 4.41

years, range 1.08–28.16 years; 32F) with 133 coordinated

EEG recordings (including 82 first visits, 27 sec visits, 15

third visits, 6 fourth visits, 2 fifth visits, and 1 sixth visit)

and Bayley Scale assessments were analyzed. All EEGs

captured the awake state and 54 captured non-rapid eye

movement sleep. The average recording length was

27.08 � 12.36 min (mean � SD) for awake data, and

17.85 � 10.19 min for sleep data. After manual removal

of artifacts, an average of 7.32 � 5.80 min of clean awake

data and 17.53 � 10.20 min of clean sleep data were

available for analysis.

Fifty-eight subjects (70.73%) had a deletion genotype,

of which 20 subjects (24.39%) had a class 1 deletion, 33

(40.24%) had a class 2 deletion, and a further five sub-

jects (6.10%) had an atypical or unspecified deletion.

Twenty-four subjects (29.27%) had a non-deletion geno-

type, of which 10 (12.20%) had a UBE3A mutation, 5

(6.10%) had an imprinting defect, 6 (7.32%) had uni-

parental paternal disomy, and 3 (3.66%) had abnormal

DNA methylation with a negative fluorescent in situ

hybridization test, ruling out deletion. Consistent with

prior literature,24,26 on our visual inspection, Bayley Cog-

nitive Scores reliably clustered between deletion and non-

deletion AS groups, but visual inspection did not suggest

any differences in Bayley Cognitive Scores across subclas-

sifications within deletion and non-deletion groups. How-

ever, our sample sizes for some subgroups were small,

limiting the power to detect a difference amongst deletion

and non-deletion genotype subclassifications.

The mean performances on the Bayley Scales domains

were Cognitive 50.6 (range 18–83), Fine Motor 31.37

(range 8–52), Gross Motor 44.52 (range 13–65), Receptive
Communication 17.07 (range 5–38), and Expressive Com-

munication 11.08 (range 4–29). The median duration of

time between assessment for the Bayley Scales and EEG

recording was 0 days (range 0–72).

Delta power is a reliable biomarker of
cognitive function in Angelman syndrome

To test for a relationship between delta power and cogni-

tive performance, we first assessed for variation based

on age and genotype. Consistent with prior studies, age

and genotype both predicted cognitive function (Fig. 2

A),29,33,34 and model testing showed that an interaction

term including both genotype and age outperformed

genotype alone (ΔAIC > 5). We, therefore, included this

interaction term (genotype:age) as a predictor. Among

subjects with longitudinal data available, the change in

delta predicted the change in the Bayley Cognitive Score

(Fig. 2B), however, subjects were found to have different

baseline values (Fig. 2C). We, therefore, included a

subject-specific intercept in the model to account for

repeat visits by several subjects. Our final mixed effects

model was:

BCS∼ 1þ log10 ageð Þþ Igenotype : log10 ageð Þþ
spectral powerþ 1jsubject IDð Þ,

where the dependent variable BCS represents the Bayley

Cognitive Score. Fixed effects include: (1) log10(age), rep-

resenting the log10-transformed age in years; (2) Igenotype,
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an indicator variable representing deletion or non-

deletion genotype; and, (3) spectral power, here, the rela-

tive delta power during wakefulness. A random effect on

intercept is included for subject ID to account for repeat

subject visits.

Fitting this model to the data, we find a strong negative

relationship between delta power and cognitive function,

wherein the model explains 93.74% of the variance in the

Bayley Cognitive Score (Fig. 2D–E; R2 = 0.9374, delta

power P < 10−5, log10(age) P < 10−24, genotype:log10(age)

P < 10−11, repeat subjects P < 10−8). For each 0.1

increase in relative delta power, the Bayley Cognitive

Score decreased by 2.00 points (95% CI [−2.81, −1.19]).
Within this model, we find that age explains most of the

variance (partial R2 = 0.7169), followed by delta power

(partial R2 = 0.2075), and then age:genotypic interaction

(partial R2 = 0.1027). Full model criteria and output

statistics are shown in Table 1. We note that the majority

of individuals in our sample were above the upper age

limit for the norm-referenced Bayley Scales standard

scores. Age-equivalent scores have been adapted for the

AS population35 but our model performed best using raw

scores and including age as a continuous variable (using

age-equivalent Bayley Cognitive Scores in our model,

R2 = 0.7001).

We assessed model accuracy and goodness-of-fit using

a leave-one-out cross-validation procedure, adapted for

mixed-effects models, where the number of iterations is

equal to the number of subjects. Here, all data points

from a single subject were excluded and model criteria

recomputed and used to predict the Bayley Cognitive

score for the excluded subject. This process was repeated

for all subjects. We found that the residuals from this

procedure are randomly distributed (Fig. 3A) and the

Figure 2. Delta power predicts cognitive function. (A) Both log10(age) (P < 10−31) and genotype:log10(age) interaction (P < 10−12) predict

cognitive function. Each circle indicates a subject visit. The solid [dashed] curves indicate model fit [95% confidence intervals]. Subjects with

deletion [non-deletion] genotype are indicated in red [blue]. (B) Amongst longitudinal subjects (N = 27 subjects, N = 51 pairs), change in delta

power predicts change in the Bayley Cognitive Score (R2 = 0.0814, P = 0.0386, β = −13.40 [SE 6.30]). (C) Subjects had similar cognitive scores

across longitudinal assessments, with different baseline values (e.g., y-intercepts). Connected points in color indicate longitudinal data from the

same subject. Points in gray indicate subjects with only one visit. (D) The observed Bayley Cognitive Scores and the Bayley Cognitive Scores

predicted by the model were highly correlated (R2 = 0.9374), indicating a good model fit. Each circle indicates a real and predicted subject score.

The dashed line indicates identical values between the two scores. (E) There is a linear relationship between delta power and the Bayley Cognitive

Score after controlling for age, age: genotype interaction, and repeat visits using the mixed-effects model shown at the top of the panel

(R2 = 0.9374, delta power P < 10−5, log10(age) P < 10−24, genotype:log10(age) P < 10−11, repeat subjects P < 10−8). The solid black line shows

the model fit and the gray shaded region indicates the 95% confidence intervals. Red circles indicate combined EEG and cognitive score visits.

Red lines indicate repeat visits by the same subject. The insert shows the standard 10–20 EEG channels used to estimate delta power. *The Bayley

Cognitive Score has been adjusted for a fixed age and genotype for visualization.

Table 1. Delta power correlates with cognitive function in AS.

Predictor Coefficient estimate P Partial R2

Delta power −20.01 � 4.08 2.76e-06 0.2075

log10(age) 29.73 � 2.28 3.07e-25 0.7169

Genotype:log10(age) −13.57 � 1.71 1.00e-12 0.1027

Coefficient estimates (�SE), P-values, and partial R2 values for the

fixed effects model predictors.
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model performs accurately on test data (Fig. 3B;

R2 = 0.9455), indicating good model generalizability. We

conclude that delta power is a powerful predictor of cog-

nitive function in AS and that the model generalizes

across this large and varied AS dataset.

Delta power measured from wake or sleep
predicts cognitive function

To test whether state of consciousness impacted the pre-

dictive performance of EEG delta power as a biomarker

for cognitive function in AS, we compared delta power

derived from a subset of wake, sleep, and mixed state

EEG segments available from the same cohort of subjects

(N = 54). We found similar relationships between cogni-

tive score and delta power using delta power in sleep

(R2 = 0.9613, P = 0.0048, coefficient estimate β = −22.01
[SE 7.45], AIC = 340.52), wake (R2 = 0.9691, P = 0.0021,

β = −18.97 [SE 5.84], AIC = 339.41), and mixed states of

consciousness (50% wake and 50% sleep; R2 = 0.9690,

P = 0.0013, β = −22.57 [SE 6.60], AIC = 338.39;

Fig. S1A–C). Delta power predicts cognitive function in

each case (P < 0.008, R2 values 0.94–0.95, and ΔAIC < 2

between models). To supplement this finding, we mod-

eled (by linear regression) delta power in the awake state

as a function of delta power in the sleep state in the 54

EEGs with both states available and found a strong corre-

lation (R2 = 0.5450; Fig. S1D). We conclude that the state

of consciousness during the EEG recording does not

impact the performance of delta power in predicting cog-

nitive function in AS.

Delta power as a biomarker is robust to
different referencing procedures

To determine the generalizability of delta power as a bio-

marker across recording configurations, we compared the

performance of delta power estimated from EEG data refer-

enced to the bipolar reference and linked-ear reference to

the results using the common average reference. We found

that models with delta power computed from the common

average reference (R2 = 0.9372, AIC = 797.39) and the

bipolar reference (R2 = 0.9353, AIC = 798.06) outper-

formed the model with delta power computed from the

linked-ear reference (R2 = 0.9354, AIC = 803.68,

5 < ΔAIC < 7). We found no evidence of a difference

(ΔAIC < 1) in model performance between the common

average reference and bipolar reference. The coefficient

estimate for delta power was significant and similar for all

montages (average reference: P < 10−5, β = −19.27 [SE

4.12]; bipolar reference: P < 10−4, β = −19.06 [SE 4.16];

linked-ear reference: P < 10−3, β = −16.44 [SE 4.28]). We

conclude that delta power estimated from the common

average and bipolar references work equivalently well to

predict cognitive function, and both slightly outperform

the linked-ear reference (Table S1).

Models of cognitive function improve with
delta power estimated from posterior EEG
channels

Delta power abnormalities have been observed to occur

across the entire scalp recording in people with AS.24 To

Figure 3. Model validation. (A) The residuals are normally distributed, with a low root mean squared prediction error (RMSPE = 2.50). (B) there is

a strong correlation (R2 = 0.9455) between the actual and predicted Bayley Cognitive Score values for each excluded subject, indicating a good

model fit. Each circle indicates a subject visit and colors represent the same subject in (A) and (B).
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test the relationship between delta power and cognitive

score at different scalp locations, we evaluated the perfor-

mance of delta power estimates obtained from posterior

subsamples of electrodes. Six clusters of interest were

defined referenced to a local common average reference.

Most clusters excluded frontal channels, as they are most

impacted by ocular artifacts and muscle artifacts, and

focused on posterior channels least impacted by these

artifacts (Fig. 4, Row 1–2).
We found that the exclusion of the frontal electrodes

improved model performance (ΔAIC > 4) when com-

pared to using data from all channels (Fig. 4, Row 3). In

particular, electrode subsets that only included occipital

and parietal channels (OP, R2 = 0.9503, delta power

P < 10−7), occipital, parietal and temporal channels

(OPT, R2 = 0.9493, P < 10−7), occipital, parietal, and

central channels (OPC, R2 = 0.9498, P < 10−7), and

occipital, parietal, central, and temporal channels (OPCT,

R2 = 0.9457, P < 10−6) yielded models with superior per-

formance compared to the model utilizing the full EEG

recording montage (5 < ΔAIC < 8). See Figure 4, Row

1–2 for graphic depictions of these electrode subsets

tested.

Models of cognitive function using raw EEG
data perform well

Manual removal of ocular, motor, and muscle artifacts

required approximately 1–2 h per 30 min of wake EEG

data. The greatest sources of noise were muscle and blink

artifact, which contaminated at least one channel in

greater than 50% of the awake EEG recordings. To deter-

mine the necessity of this time-consuming manual step,

we evaluated model performance with delta power esti-

mated from the raw EEG data, without removing arti-

facts. We found that delta estimates from raw data using

the OP (R2 = 0.9517, delta power P < 10−8), OPT

(R2 = 0.9493, P < 10−8), OPC (R2 = 0.9526, P < 10−8),

and OPCT (R2 = 0.9467, P < 10−8) montages outper-

formed the original model with delta power estimated

from cleaned data using the full average reference mon-

tage (ΔAIC > 4, Fig. 4, Row 3–4).

Figure 4. Sub-sampled electrode clusters and raw EEG data predict cognitive function in AS. Sub-sampled clusters of electrodes are shown in the

first row (blue = channel included in montage), with the groupwise abbreviation and the names of channels included listed in the second row.

The full average reference is shown in the second column in gray for comparison, and cleaned data in the full average reference, to which all

other cells are compared, is shown in dark gray. For each of the sub-sampled channel montages, and the full average reference, relative delta

power was computed using cleaned, raw, and raw data with balanced duration to cleaned data, and used to predict the Bayley Cognitive Score.

Cells with AIC scores superior (ΔAIC > 4) to those from the model using cleaned data from all electrodes in the full average reference are

highlighted in green.
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Improved model performance with raw data could be

explained by the longer total duration of EEG data

included in the analyses. To avoid this confounder, we

compared model performance using delta power esti-

mated from raw EEG data of the same duration as

cleaned data segments for each subject (mean � STD,

7.32 � 5.80 min). Even with equal data quantities, the

raw data analyzed using the channel subsets excluding

frontal electrodes showed slightly improved model fits

compared to the cleaned data from the full EEG montage

(1 < ΔAIC < 3; Fig. 4, Row 5). We conclude that with

frontal electrodes removed, delta power estimates from

raw data outperform a similar measure computed from

manually cleaned data in predicting cognitive function in

AS (Fig. 5; full model output statistics are shown in

Table 2).

Models of cognitive function with relative
delta power outperform other canonical
frequency bands

Relative measures of delta power can be impacted by

prominent activities in other frequencies bands, such as

the posterior dominant alpha rhythm. However, absolute

power measures can be impacted by non-cortical features,

such as skull thickness.36 Given these competing limita-

tions, we evaluated whether absolute or relative delta

power provided a better biomarker for cognitive function

in AS. We found a significant negative relationship

between absolute delta power and Bayley Cognitive Score

(P < 10−3). However, the model using relative delta

power outperformed the model with absolute delta power

(ΔAIC = 11.22).

To evaluate the specificity of the model to the delta

band, we evaluated the relationship between each of the

canonical frequency bands (alpha, theta, beta) and cogni-

tive function. We found a positive relationship between

Bayley Cognitive Score and relative theta power

(P = 0.0011), the log10-transform of relative alpha power

(P < 10−4), and the log10-transform of relative beta power

(P < 10−5; Table S2). Including both delta power and

either relative theta power, relative log10 alpha power, or

relative log10 beta power in the model, only relative delta

power remained a significant predictor of cognitive func-

tion (Table S3), suggesting that relative power in fre-

quency bands other than delta may simply provide a

poor surrogate measure of relative delta power. We con-

clude that relative delta power is the optimal spectral

band to predict cognitive function in AS.

Delta power predicts motor and language
function

In addition to cognitive performance, we tested delta

power as a predictor of performance in other develop-

mental domains using the Fine and Gross Motor and

Expressive and Receptive Communication Scores of the

Bayley Scales. We note that although these measures are

independently tested and scored in each subject, the Bay-

ley Scales were highly collinear across developmental

domains (Fig. S2). The strongest correlations were

observed between the Cognitive, Fine Motor, and Recep-

tive Communication Scores (R2 > 0.7).

We found a negative correlation between delta power

estimated from the OP montage on raw data and

Figure 5. Delta power calculated from raw data in the OP montage

predicts cognitive function. There is a linear relationship between

delta power, estimated from raw data in the OP montage (inset), and

the Bayley Cognitive Score after controlling for age, age:genotype

interaction, and random effects for repeat subjects (R2 = 0.9517,

delta power P < 10−8, log10(age) P < 10−22, genotype:log10(age)

P < 10−12, repeat subjects P < 10−8). The solid black line indicates the

linear model fit, and the gray shaded region indicates the 95%

confidence interval. Longitudinal same-subject data are connected by

red dotted lines. *The Bayley Cognitive Score has been adjusted for

the impacts of age and genotype and the recast values plotted.

Table 2. Delta power, estimated from raw EEG data in the OP mon-

tage, correlates with cognitive function in AS.

Predictor Coefficient estimate P Partial R2

Delta power −26.94 � 4.21 2.77e-09 0.3806

log10(age) 27.87 � 2.25 1.59e-23 0.5902

Genotype : log10(age) −13.89 � 1.67 1.12e-13 0.0516

Coefficient estimates (�SE), P-values, and partial R2 values for the

fixed effects model predictors.

1440 ª 2021 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association

Delta Power Predicts Cognition in AS L. M. Ostrowski et al.



receptive communication (Fig. 6A; R2 = 0.8718,

P < 10−3, β = −10.77 [SE 3.12]), expressive communica-

tion (Fig. 6B; R2 = 0.6801, P = 0.0209, β = −6.16 [SE

2.63]), and fine motor skills (Fig. 6C; R2 = 0.9074,

P < 10−4, β = −14.84 [SE 3.42]). We did not find evi-

dence of a relationship between delta power estimated

from the OP montage and gross motor skills (Fig. 6D;

R2 = 0.9382, P = 0.36, β = −4.02 [SE 4.34]). Using the

cleaned data in the full-channel montage, we found a

negative relationship between delta power and fine motor

skills (R2 = 0.9026, P < 10−3, β = −11.91 [SE 3.15]) and

receptive communication (R2 = 0.8559, P = 0.0302,

β = −6.36 [SE 2.90]), and a negative trend between delta

power and expressive communication (R2 = 0.6823,

P = 0.0585, β = −4.58 [SE 2.40]). We did not find evi-

dence of a relationship between delta power estimated

from the full-channel montage and gross motor skills

(P > 0.2), though gross motor scores were noted to have

a limited range of scores across AS patients, limiting the

power to detect a relationship. We conclude that delta

power predicts not only cognitive function, but additional

domains of neurodevelopment—motor and language

Figure 6. Motor and language function are predicted by delta power with reduced data collection criteria. Delta power estimated using the OP

regional reference montage (insets), and raw EEG data was used to predict the (A) Bayley Receptive Communication Score, (B) Bayley Expressive

Communication Score, (C) Bayley Fine Motor Score, and (D) Bayley Gross Motor Score. For all plots, the solid black line shows the linear fit, and

the gray shaded region indicates the 95% confidence interval. Longitudinal same-subject data are connected by red dotted lines. The R2 value

given by the model and the P value for delta power are shown in bolded text. *Scores have been adjusted for a fixed age and genotype for

visualization.
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function—in AS, findings that are most evident using the

OP montage.

Discussion

Using a large natural history database of individuals with

combined short EEG recordings and cognitive assess-

ments, we found that delta power provides a robust bio-

marker for cognitive function in Angelman syndrome.

This relationship was evident after controlling for age and

genotype and was generalizable across a large cohort of

subjects with AS. These results support the viability of

delta power as a promising surrogate biomarker for clini-

cal trials to test emerging disease-modifying treatments in

this population.

EEG recordings provide a direct measure of neuronal

activity, and delta activity has been proposed to reflect

the dynamics of intrinsic membrane and synaptic con-

ductances, with local generators in the thalamus37,38 and

the cortex.39,40 The relationship between increased delta

power with decreased cognitive function has been

observed across many disease states.41–44 The acquisition

of cognitive skills also coincides with decreased delta

power and increased prevalence of faster oscillations

across normal development.45 Hypersynchronization in

the delta frequency band and decreased signal complexity

observed in patients with AS have been inferred as a state

of diminished consciousness.46 Excessive delta activity in

AS at least in part replaces or disrupts typically present

rhythms, such as alpha band activity (8–12 Hz), which

has known correlations with cognitive function, particu-

larly in relation to the ability to orient and sustain atten-

tion, process information, and store and retrieve semantic

memory.47–51 Here, we demonstrated that increased delta

power corresponds to decreased cognitive, motor, and

language performance in AS, validating the utility of this

biomarker as a surrogate for clinical disease severity.

Given this strong relationship and the impact that these

abnormal rhythms have on normal cognitive function,

treatments that improve these abnormal brain rhythms

would be expected to correlate with improvement in AS.

We found that the strong relationship between delta

power and cognitive function in AS persists across differ-

ent states of consciousness. This finding is of practical

importance because disrupted sleep and the lack of well-

characterized sleep architecture in most patients with AS

makes confident estimates of sleep states challenging in

this population. Furthermore, we found that manual

cleaning of the EEG data is unnecessary to reliably mea-

sure this high amplitude and diffuse signal. Finally, we

found that the use of just five electrodes, placed in the

posterior regions of the head to avoid the most common

recording artifacts, provides optimal estimates of delta

power to reliably predict cognitive function. Because the

application of EEG electrodes is both time-consuming

and can be poorly tolerated in young children or those

with severe developmental delay, fewer electrodes may

improve the tolerance of an EEG recording session. The

robustness of this biomarker to different brain regions,

states of consciousness, and high-artifact recordings sup-

port its practical deployment in clinical populations.

Although delta power abnormalities have historically

been targeted as the canonical EEG feature in AS, abnor-

malities in other frequency bands have also been reported

in AS. Theta power has been shown to be increased

in approximately half of the AS population.21,23,25,52

Decreased beta power has been found in patients with

deletion-positive AS,26 in which the genes GABRB3,

GABRA5, and GABRG3, encoding subunits of the GABAA

receptor (involved in the production of healthy beta oscil-

lations53), are deleted in addition to UBE3A. Consistent

with prior reports, we found relationships between cogni-

tive function and relative theta and beta band activity,

but these relationships did not persist after controlling for

delta band activity. Thus, this work finds that delta power

is the optimal frequency band to predict cognitive func-

tion in AS.

At present, there are no specific disease-modifying ther-

apies available for AS, but transformative treatments are

on the horizon. Current supportive therapies include

physical and occupational therapies, augmentative com-

munication strategies, and medication for comorbid sei-

zures, attention issues, sleep disturbances, and

gastrointestinal issues,54 as well as dietary adjustments to

help reduce seizures.55–57 Emerging therapies which

restore neural UBE3A expression have the potential to

directly modify the pathogenic disease process in AS.12 In

rodent models of AS,11 successes in restoring neural

UBE3A expression using antisense oligonucleotides13 and

topoisomerase inhibitors14,15 have been achieved, and

have fast-approaching potential for transition to clinical

therapies. Direct measures of UBE3A expression in these

models were demonstrated through direct assays of neu-

ronal tissue; behavioral measures provided a less robust

response. A rapid, non-invasive biomarker for target

engagement and treatment response will be useful as these

potential therapies are translated to human patients. Delta

power in short EEG recordings may provide a non-

invasive measure to detect treatment response and a clini-

cally meaningful reduction in disease severity.

AS results in severe functional impairments and, cur-

rently, supportive therapies are the only means of treat-

ment. As new disease-modifying treatments emerge and

are transitioned to clinical trials, quantitative biomarkers

are required for rapid and accurate assessment of inter-

vention efficacy. Here we show that delta power correlates
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with cognitive function in AS, and that this correlation

persists with changes in the state of consciousness, vari-

able electrode configuration, and non-neuronal artifacts

in the data. Furthermore, the simplicity of the model is

an attractive feature for clinical application; in an era of

ever-expanding machine learning models and complex

approaches to computational analysis, the identification

of a biomarker with a simple, direct relationship to out-

come, without specific parameter requirements, increases

usability and model interpretation.58 Here, a simple and

interpretable mixed-effect linear model achieved near-

perfect prediction of cognitive function. We, therefore,

propose that delta power provides a robust, easily

obtained, and practical biomarker of clinical disease sever-

ity in AS. This work also demonstrates the utility of EEG

to identify reliable biomarkers for neurological function

in neurodevelopmental disease.
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Figure S1. Data from wake, sleep, and mixed states of

consciousness correlate with cognitive function. Delta

power was estimated (A) during wakefulness

(R2 = 0.9691, P = 0.0021, β = −18.97 [SE 5.84], AIC =
339.41), (B) during sleep (R2 = 0.9613, P = 0.0048,

β = −22.01 [SE 7.45], AIC = 340.52), and (C) from

mixed states of consciousness, created from 50% to 50%

sleep data (R2 = 0.9690, P = 0.0013, β = −22.57 [SE

6.60], AIC = 338.39). (D) Delta power estimated from

the same subjects during wake and sleep were highly

correlated (R2 = 0.5450). For all plots, the solid black

line indicates the linear fit and the gray shaded region

indicates the 95% confidence interval. Longitudinal

same-subject data are connected by red dotted lines. The

insert shows the standard 10–20 EEG channels that were

used to generate an estimate of delta power. *Scores
have been adjusted for a fixed age and genotype for visu-

alization.

Figure S2. Collinearity among the Bayley Scales in AS.

Comparison of the Bayley Scores in four developmental

domains. For each subject, the Bayley Scores are plotted

against one another, per the vertical and horizontal labels.

The R2 values are shown in blue text. Particularly strong

collinearities exist between the Bayley Cognitive, Fine

Motor, and Receptive Communication Scores (R2 > 0.7),

whereas relatively weaker correlations exist between the

Bayley Gross Motor and Expressive Communication

Scores and all other Bayley Scores (R2 < 0.7).

Table S1. Delta power was estimated from three montages

to model cognitive function in Angelman syndrome.

Detailed outputs for all three models are shown, including

R2, AIC, and coefficient estimates (β � SE) and P-values

for each predictor.

Table S2. Spectral power in the delta (2–4 Hz), theta

(5–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) fre-

quency bands was used to model cognitive function. The

standardized coefficient estimates (β � SE) and P-values

for the spectral predictors in each model are shown, with

P-values that pass Bonferroni correction (P < 0.00714 for

7 tests) indicated in bold.

Table S3. Detailed model outputs for three models with

two spectral predictors are shown. In all models, only

delta power remains a significant predictor (P < 0.038).
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